博客
关于我
常见函数的定义域
阅读量:495 次
发布时间:2019-03-07

本文共 513 字,大约阅读时间需要 1 分钟。

今天我在学习如何优化HTML代码,特别是如何让页面加载更快,同时又能保持内容的可读性。对于我来说,这是一个技术问题,也是一个关于效率的思考过程。

我最近在研究网页性能优化,发现一个关键点——减少不必要的HTML标签可以显著降低页面的加载时间。虽然看起来有一些空的div标签可能看起来无关紧要,但它们实际上会增加DOM的大小,对页面性能产生负面影响。

为了验证这一点,我决定自己动手去除这些不必要的标签。首先,我观察到页面中有多个空的div和p标签,这些标签看起来像是某种占位符或错误。我尝试手动去掉这些标签,然后重新加载页面,发现页面加载速度明显提高了。

接下来,我意识到图片的加载也是影响页面性能的重要因素。虽然图片能增加内容的可视化效果,但过多的图片或不必要的图片加载会占用大量的带宽。我决定检查页面中的图片标签,确保每张图片都有实际的用途,并且不会影响用户体验。

在这个过程中,我也意识到代码的整洁性对维护和后续优化有重要意义。干净的代码更容易被其他开发者理解和修改,避免了潜在的bug产生。

通过这些实践,我不仅提升了页面的性能,还让自己的代码写作能力得到了进一步的提升。这对我以后做项目或处理类似问题都有很大的帮助。

转载地址:http://mwicz.baihongyu.com/

你可能感兴趣的文章
NumPy 库详细介绍-ChatGPT4o作答
查看>>
NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
查看>>
numpy 或 scipy 有哪些可能的计算可以返回 NaN?
查看>>
numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
查看>>
numpy 数组与矩阵的乘法理解
查看>>
NumPy 数组拼接方法-ChatGPT4o作答
查看>>
numpy 用法
查看>>
Numpy 科学计算库详解
查看>>
Numpy.fft.fft和numpy.fft.fftfreq有什么不同
查看>>
numpy.linalg.norm(求范数)
查看>>
Numpy.ndarray对象不可调用
查看>>
Numpy.VisibleDeproationWarning:从不整齐的嵌套序列创建ndarray
查看>>
Numpy:按多个条件过滤行?
查看>>
Numpy:条件总和
查看>>
numpy、cv2等操作图片基本操作
查看>>
numpy中的argsort的用法
查看>>
NumPy中的精度:比较数字时的问题
查看>>
numpy判断对应位置是否相等,all、any的使用
查看>>
Numpy多项式.Polynomial.fit()给出的系数与多项式.Polyfit()不同
查看>>
Numpy如何使用np.umprod重写range函数中i的python
查看>>